Sensitive-video analysis = Análise de vídeo sensível
Ano: 2016
Tipo: Tese
Agência fin.: CAPES
Grau: Doutorado
Disciplina: Ciência da Computação
Universidade (IES): UNICAMP
Faculdade/Departamento: Instituto de Computação
Programa: Doutorado em Ciência da Computação
Fonte de dados: UNICAMP DSpace
Autor: Moreira, Daniel Henriques
Orientador: Anderson de Rezende Rocha, Siome Klein Goldenstein
Assunto: Visao por computador,Reconhecimento de padroes,Video digital - Classificacao,Analise de imagem,Pornografia na internet,Violencia no cinema,Computer vision,Pattern recognition,Digital video - Classification,Image analysis,Internet pornography
Resumo: Resumo: Vídeo sensível pode ser definido como qualquer filme capaz de oferecer ameaças à sua audiência. Representantes típicos incluem ¿ mas não estão limitados a ¿ pornografia, violência, abuso infantil, crueldade contra animais, etc. Hoje em dia, com o papel cada vez mais pervasivo dos dados digitais em nossa vidas, a análise de conteúdo sensível representa uma grande preocupação para representantes da lei, empresas, professores, e pais, devido aos potenciais danos que este tipo de conteúdo pode infligir a menores, estudantes, trabalhadores, etc. Não obstante, o emprego de mediadores humanos, para constantemente analisar grandes quantidades de dados sensíveis, muitas vezes leva a ocorrências de estresse e trauma, o que justifica a busca por análises assistidas por computador. Neste trabalho, nós abordamos este problema em duas frentes. Na primeira, almejamos decidir se um fluxo de vídeo apresenta ou não conteúdo sensível, à qual nos referimos como classificação de vídeo sensível. Na segunda, temos como objetivo encontrar os momentos exatos em que um fluxo começa e termina a exibição de conteúdo sensível, em nível de quadros de vídeo, à qual nos referimos como localização de conteúdo sensível. Para ambos os casos, projetamos e desenvolvemos métodos eficazes e eficientes, com baixo consumo de memória, e adequação à implantação em dispositivos móveis. Neste contexto, nós fornecemos quatro principais contribuições. A primeira é uma nova solução baseada em sacolas de palavras visuais, para a classificação eficiente de vídeos sensíveis, apoiada na análise de fenômenos temporais. A segunda é uma nova solução de fusão multimodal em alto nível semântico, para a localização de conteúdo sensível. A terceira, por sua vez, é um novo detector espaço-temporal de pontos de interesse, e descritor de conteúdo de vídeo. Finalmente, a quarta contribuição diz respeito a uma base de vídeos anotados em nível de quadro, que possui 140 horas de conteúdo pornográfico, e que é a primeira da literatura a ser adequada para a localização de pornografia. Um aspecto relevante das três primeiras contribuições é a sua natureza de generalização, no sentido de poderem ser empregadas ¿ sem modificações no passo a passo ¿ para a detecção de tipos diversos de conteúdos sensíveis, tais como os mencionados anteriormente. Para validação, nós escolhemos pornografia e violência ¿ dois dos tipos mais comuns de material impróprio ¿ como representantes de interesse, de conteúdo sensível. Nestes termos, realizamos experimentos de classificação e de localização, e reportamos resultados para ambos os tipos de conteúdo. As soluções propostas apresentam uma acurácia de 93% em classificação de pornografia, e permitem a correta localização de 91% de conteúdo pornográfico em fluxo de vídeo. Os resultados para violência também são interessantes: com as abordagens apresentadas, nós obtivemos o segundo lugar em uma competição internacional de detecção de cenas violentas. Colocando ambas em perspectiva, nós aprendemos que a detecção de pornografia é mais fácil que a de violência, abrindo várias oportunidades de pesquisa para a comunidade científica. A principal razão para tal diferença está relacionada aos níveis distintos de subjetividade que são inerentes a cada conceito. Enquanto pornografia é em geral mais explícita, violência apresenta um espectro mais amplo de possíveis manifestações
Abstract: Abstract: Sensitive video can be defined as any motion picture that may pose threats to its audience. Typical representatives include ¿ but are not limited to ¿ pornography, violence, child abuse, cruelty to animals, etc. Nowadays, with the ever more pervasive role of digital data in our lives, sensitive-content analysis represents a major concern to law enforcers, companies, tutors, and parents, due to the potential harm of such contents over minors, students, workers, etc. Notwithstanding, the employment of human mediators for constantly analyzing huge troves of sensitive data often leads to stress and trauma, justifying the search for computer-aided analysis. In this work, we tackle this problem in two ways. In the first one, we aim at deciding whether or not a video stream presents sensitive content, which we refer to as sensitive-video classification. In the second one, we aim at finding the exact moments a stream starts and ends displaying sensitive content, at frame level, which we refer to as sensitive-content localization. For both cases, we aim at designing and developing effective and efficient methods, with low memory footprint and suitable for deployment on mobile devices. In this vein, we provide four major contributions. The first one is a novel Bag-of-Visual-Words-based pipeline for efficient time-aware sensitive-video classification. The second is a novel high-level multimodal fusion pipeline for sensitive-content localization. The third, in turn, is a novel space-temporal video interest point detector and video content descriptor. Finally, the fourth contribution comprises a frame-level annotated 140-hour pornographic video dataset, which is the first one in the literature that is appropriate for pornography localization. An important aspect of the first three contributions is their generalization nature, in the sense that they can be employed ¿ without step modifications ¿ to the detection of diverse sensitive content types, such as the previously mentioned ones. For validation, we choose pornography and violence ¿ two of the commonest types of inappropriate material ¿ as target representatives of sensitive content. We therefore perform classification and localization experiments, and report results for both types of content. The proposed solutions present an accuracy of 93% in pornography classification, and allow the correct localization of 91% of pornographic content within a video stream. The results for violence are also compelling: with the proposed approaches, we reached second place in an international competition of violent scenes detection. Putting both in perspective, we learned that pornography detection is easier than its violence counterpart, opening several opportunities for additional investigations by the research community. The main reason for such difference is related to the distinct levels of subjectivity that are inherent to each concept. While pornography is usually more explicit, violence presents a broader spectrum of possible manifestations,\$aCiência da Computação,\$a1572763, 1197473,\$aCAPES
Referência: MOREIRA, Daniel Henriques. Sensitive-video analysis = Análise de vídeo sensível. 2016. 1 recurso online (144 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em:
Tags: